TL;DR: System to learn robotic tasks in the real world with reinforcement learning without instrumentation
Abstract: The success of reinforcement learning in the real world has been limited to instrumented laboratory scenarios, often requiring arduous human supervision to enable continuous learning. In this work, we discuss the required elements of a robotic system that can continually and autonomously improve with data collected in the real world, and propose a particular instantiation of such a system. Subsequently, we investigate a number of challenges of learning without instrumentation -- including the lack of episodic resets, state estimation, and hand-engineered rewards -- and propose simple, scalable solutions to these challenges. We demonstrate the efficacy of our proposed system on dexterous robotic manipulation tasks in simulation and the real world, and also provide an insightful analysis and ablation study of the challenges associated with this learning paradigm.
Keywords: Reinforcement Learning, Robotics
Original Pdf: pdf
9 Replies
Loading