Deep Random Splines for Point Process Intensity EstimationDownload PDF

Published: 03 May 2019, Last Modified: 22 Oct 2023DeepGenStruct 2019Readers: Everyone
Keywords: splines, VAE, random functions, point processes, neuroscience
TL;DR: We combine splines with neural networks to obtain a novel distribution over functions and use it to model intensity functions of point processes.
Abstract: Gaussian processes are the leading class of distributions on random functions, but they suffer from well known issues including difficulty scaling and inflexibility with respect to certain shape constraints (such as nonnegativity). Here we propose Deep Random Splines, a flexible class of random functions obtained by transforming Gaussian noise through a deep neural network whose output are the parameters of a spline. Unlike Gaussian processes, Deep Random Splines allow us to readily enforce shape constraints while inheriting the richness and tractability of deep generative models. We also present an observational model for point process data which uses Deep Random Splines to model the intensity function of each point process and apply it to neuroscience data to obtain a low-dimensional representation of spiking activity. Inference is performed via a variational autoencoder that uses a novel recurrent encoder architecture that can handle multiple point processes as input.
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/arxiv:1903.02610/code)
3 Replies

Loading