Uncertainty-based Offline Variational Bayesian Reinforcement Learning for Robustness under Diverse Data Corruptions
Keywords: Robust Offline Reinforcement Learning, Variational Bayesian Inference, Diverse Data Corruptions, Uncertainty
Abstract: Real-world offline datasets are often subject to data corruptions (such as noise or adversarial attacks) due to sensor failures or malicious attacks. Despite advances in robust offline reinforcement learning (RL), existing methods struggle to learn robust agents under high uncertainty caused by the diverse corrupted data (i.e., corrupted states, actions, rewards, and dynamics), leading to performance degradation in clean environments. To tackle this problem, we propose a novel robust variational Bayesian inference for offline RL (TRACER). It introduces Bayesian inference for the first time to capture the uncertainty via offline data for robustness against all types of data corruptions. Specifically, TRACER first models all corruptions as the uncertainty in the action-value function. Then, to capture such uncertainty, it uses all offline data as the observations to approximate the posterior distribution of the action-value function under a Bayesian inference framework. An appealing feature of TRACER is that it can distinguish corrupted data from clean data using an entropy-based uncertainty measure, since corrupted data often induces higher uncertainty and entropy. Based on the aforementioned measure, TRACER can regulate the loss associated with corrupted data to reduce its influence, thereby enhancing robustness and performance in clean environments. Experiments demonstrate that TRACER significantly outperforms several state-of-the-art approaches across both individual and simultaneous data corruptions.
Primary Area: Reinforcement learning
Submission Number: 16300
Loading