Can Mean Field Control (MFC) Approximate Cooperative Multi Agent Reinforcement Learning (MARL) with Non-Uniform Interaction?Download PDF

Published: 20 May 2022, Last Modified: 05 May 2023UAI 2022 PosterReaders: Everyone
Keywords: Mean-field control, MARL, approximation, non-uniform interaction
TL;DR: We show that, under certain conditions, mean-field control can approximate cooperative multi-agent reinforcement learning problems even with non-uniform interaction
Abstract: Mean-Field Control (MFC) is a powerful tool to solve Multi-Agent Reinforcement Learning (MARL) problems. Recent studies have shown that MFC can well-approximate MARL when the population size is large and the agents are exchangeable. Unfortunately, the presumption of exchangeability implies that all agents uniformly interact with one another which is not true in many practical scenarios. In this article, we relax the assumption of exchangeability and model the interaction between agents via an arbitrary doubly stochastic matrix. As a result, in our framework, the mean-field `seen' by different agents are different. We prove that, if the reward of each agent is an affine function of the mean-field seen by that agent, then one can approximate such a non-uniform MARL problem via its associated MFC problem within an error of $e=\mathcal{O}(\frac{1}{\sqrt{N}}[\sqrt{|\mathcal{X}|} + \sqrt{|\mathcal{U}|}])$ where $N$ is the population size and $|\mathcal{X}|$, $|\mathcal{U}|$ are the sizes of state and action spaces respectively. Finally, we develop a Natural Policy Gradient (NPG) algorithm that can provide a solution to the non-uniform MARL with an error $\mathcal{O}(\max\{e,\epsilon\})$ and a sample complexity of $\mathcal{O}(\epsilon^{-3})$ for any $\epsilon >0$.
Supplementary Material: zip
4 Replies

Loading