Cost-efficient SVRG with Arbitrary SamplingDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Withdrawn SubmissionReaders: Everyone
Keywords: Distributed optimization, communication efficiency, SVRG, importance sampling, Internet-of-Things
Abstract: We consider the problem of distributed optimization over a network, using a stochastic variance reduced gradient (SVRG) algorithm, where executing every iteration of the algorithm requires computation and exchange of gradients among network nodes. These tasks always consume network resources, including communication bandwidth and battery power, which we model as a general cost function. In this paper, we consider an SVRG algorithm with arbitrary sampling (SVRG-AS), where the nodes are sampled according to some distribution. We characterize the convergence of SVRG-AS, in terms of this distribution. We determine the distribution that minimizes the costs associated with running the algorithm, with provable convergence guarantees. We show that our approach can substantially outperform vanilla SVRG and its variants in terms of both convergence rate and total cost of running the algorithm. We then show how our approach can optimize the mini-batch size to address the tradeoff between low communication cost and fast convergence rate. Comprehensive theoretical and numerical analyses on real datasets reveal that our algorithm can significantly reduce the cost, especially in large and heterogeneous networks. Our results provide important practical insights for using machine learning over Internet-of-Things.
One-sentence Summary: This paper develops a novel framework to minimize the network cost of running distributed machine learning at the edge.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Supplementary Material: zip
Reviewed Version (pdf): https://openreview.net/references/pdf?id=leEJReQgwS
6 Replies

Loading