HCMD-zero: Learning Value Aligned Mechanisms from DataDownload PDF

Published: 25 Apr 2022, Last Modified: 05 May 2023ICLR 2022 Workshop on Gamification and Multiagent SolutionsReaders: Everyone
Keywords: mechanism design, agent based modeling, multiagent
TL;DR: We introduce a general purpose method for designing mechanism that mediate human economic interactions and are preferred by participants over baseline alternatives.
Abstract: Artificial learning agents are mediating a larger and larger number of interactions among humans, firms, and organizations, and the intersection between mechanism design and machine learning has been heavily investigated in recent years. However, mechanism design methods make strong assumptions on how participants behave (e.g. rationality), or on the kind of knowledge designers have access to a priori (e.g. access to strong baseline mechanisms). Here we introduce HCMD-zero, a general purpose method to construct mechanism agents. HCMD-zero learns by mediating interactions among participants, while remaining engaged in an electoral contest with copies of itself, thereby accessing direct feedback from participants. Our results on the Public Investment Game, a stylized resource allocation game that highlights the tension between productivity, equality and the temptation to free-ride, show that HCMD-zero produces competitive mechanism agents that are consistently preferred by human participants over baseline alternatives, and does so automatically, without requiring human knowledge, and by using human data sparingly and effectively Our detailed analysis shows HCMD-zero elicits consistent improvements over the course of training, and that it results in a mechanism with an interpretable and intuitive policy.
1 Reply

Loading