Solving Structured Hierarchical Games Using Differential Backward InductionDownload PDF

Published: 25 Apr 2022, Last Modified: 05 May 2023ICLR 2022 Workshop on Gamification and Multiagent SolutionsReaders: Everyone
Keywords: dynamical systems, game theory, graphical models, hierarchical decision making
Abstract: From large-scale organizations to decentralized political systems, hierarchical strategic decision making is commonplace. We introduce a novel class of structured hierarchical games (SHGs) that formally capture such hierarchical strategic interactions. In an SHG, each player is a node in a tree, and strategic choices of players are sequenced from root to leaves, with root moving first, followed by its children, then followed by their children, and so on until the leaves. A player’s utility in an SHG depends on its own decision, and on the choices of its parent and all the tree leaves. SHGs thus generalize simultaneous-move games, as well as Stackelberg games with many followers. We leverage the structure of both the sequence of player moves as well as payoff dependence to develop a novel gradient-based backpropagation-style algorithm, which we call Differential Backward Induction (DBI), for approximating equilibria of SHGs. We provide a sufficient condition for convergence of DBI and demonstrate its efficacy in finding approximate equilibrium solutions to several SHG models of hierarchical policy-making problems.
1 Reply

Loading