K-Sort Eval: Efficient Preference Evaluation for Visual Generation via Corrected VLM-as-a-Judge

ICLR 2026 Conference Submission15284 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Visual generation evaluation, preference alignment, corrected VLM-as-a-Judge, efficient evaluation
Abstract: The rapid development of visual generative models raises the need for more scalable and human-aligned evaluation methods. While the crowdsourced Arena platforms offer human preference assessments by collecting human votes, they are costly and time-consuming, inherently limiting their scalability. Leveraging vision-language model (VLMs) as substitutes for manual judgments presents a promising solution. However, the inherent hallucinations and biases of VLMs hinder alignment with human preferences, thus compromising evaluation reliability. Additionally, the static evaluation approach lead to low efficiency. In this paper, we propose K-Sort Eval, a reliable and efficient VLM-based evaluation framework that integrates posterior correction and dynamic matching. Specifically, we curate a high-quality dataset from thousands of human votes in K-Sort Arena, with each instance containing the outputs and rankings of K models. When evaluating a new model, it undergoes (K+1)-wise free-for-all comparisons with existing models, and the VLM provide the rankings. To enhance alignment and reliability, we propose a posterior correction method, which adaptively corrects the posterior probability in Bayesian updating based on the consistency between the VLM prediction and human supervision. Moreover, we propose a dynamic matching strategy, which balances uncertainty and diversity to maximize the expected benefit of each comparison, thus ensuring more efficient evaluation. Extensive experiments show that K-Sort Eval delivers evaluation results consistent with K-Sort Arena, typically requiring fewer than 90 model runs, demonstrating both its efficiency and reliability. The dataset and code are publicly available.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Submission Number: 15284
Loading