SafeUAV: Learning to Estimate Depth and Safe Landing Areas for UAVs from Synthetic DataOpen Website

2018 (modified: 11 Nov 2022)ECCV Workshops (2) 2018Readers: Everyone
Abstract: The emergence of relatively low cost UAVs has prompted a global concern about the safe operation of such devices. Since most of them can ‘autonomously’ fly by means of GPS way-points, the lack of a higher logic for emergency scenarios leads to an abundance of incidents involving property or personal injury. In order to tackle this problem, we propose a small, embeddable ConvNet for both depth and safe landing area estimation. Furthermore, since labeled training data in the 3D aerial field is scarce and ground images are unsuitable, we capture a novel synthetic aerial 3D dataset obtained from 3D reconstructions. We use the synthetic data to learn to estimate depth from in-flight images and segment them into ‘safe-landing’ and ‘obstacle’ regions. Our experiments demonstrate compelling results in practice on both synthetic data and real RGB drone footage.
0 Replies

Loading