Fast Generation for Convolutional Autoregressive ModelsDownload PDF

21 Nov 2024 (modified: 21 Feb 2017)ICLR 2017Readers: Everyone
Abstract: Convolutional autoregressive models have recently demonstrated state-of-the-art performance on a number of generation tasks. While fast, parallel training methods have been crucial for their success, generation is typically implemented in a naive fashion where redundant computations are unnecessarily repeated. This results in slow generation, making such models infeasible for production environments. In this work, we describe a method to speed up generation in convolutional autoregressive models. The key idea is to cache hidden states to avoid redundant computation. We apply our fast generation method to the Wavenet and PixelCNN++ models and achieve up to 21x and 183x speedups respectively.
TL;DR: We significantly speedup the generation in autoregressive models like Wavenet and PixelCNN up to 183 times.
Keywords: Deep learning, Applications
Conflicts: illinois.edu, ibm.com
3 Replies

Loading