**Keywords:**generative neural network, inverse problem, denoise, gradient type method, non-convex optimization

**Abstract:**We consider the problem of recovering an unknown latent code vector under a known generative model. For a $d$-layer deep generative network $\mathcal{G}:\mathbb{R}^{n_0}\rightarrow \mathbb{R}^{n_d}$ with ReLU activation functions, let the observation be $\mathcal{G}(x)+\epsilon$ where $\epsilon$ is noise. We introduce a simple novel algorithm, Partially Linearized Update for Generative Inversion (PLUGIn), to estimate $x$ (and thus $\mathcal{G}(x)$). We prove that, when weights are Gaussian and layer widths $n_i \gtrsim 5^i n_0$ (up to log factors), the algorithm converges geometrically to a neighbourhood of $x$ with high probability. Note the inequality on layer widths allows $n_i>n_{i+1}$ when $i\geq 1$. To our knowledge, this is the first such result for networks with some contractive layers. After a sufficient number of iterations, the estimation errors for both $x$ and $\mathcal{G}(x)$ are at most in the order of $\sqrt{4^dn_0/n_d} \|\epsilon\|$. Thus, the algorithm can denoise when the expansion ratio $n_d/n_0$ is large. Numerical experiments on synthetic data and real data are provided to validate our theoretical results and to illustrate that the algorithm can effectively remove artifacts in an image.

**Supplementary Material:**pdf

**Code Of Conduct:**I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.

**Code:**https://github.com/babhrujoshi/PLUGIn

8 Replies

Loading