Keywords: Treatment Allocation, Treatment effects, Sample complexity, RCT
TL;DR: Course treatment effect estimates suffice for near-optimal treatment allocations.
Abstract: Conditional average treatment effect (CATE) estimation is the de facto gold standard for targeting a treatment to a heterogeneous population. The method estimates treatment effects up to an error $\epsilon > 0$ in each of $M$ different strata of the population, targeting individuals in decreasing order of estimated treatment effect until the budget runs out. In general, this method requires $O(M/\epsilon^2)$ samples. This is best possible if the goal is to estimate all treatment effects up to an $\epsilon$ error.
In this work, we show how to achieve the same total treatment effect as CATE with only $O(M/\epsilon)$ samples for natural distributions of treatment effects. The key insight is that coarse estimates suffice for near-optimal treatment allocations. In addition, we show that budget flexibility can further reduce the sample complexity of allocation.
Finally, we evaluate our algorithm on various real-world RCT datasets. In all cases, it finds nearly optimal treatment allocations with surprisingly few samples. Our work highlights the fundamental distinction between treatment effect estimation and treatment allocation: the latter requires far fewer samples.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Submission Number: 22187
Loading