Feature prioritization and regularization improve standard accuracy and adversarial robustness

Chihuang Liu, Joseph JaJa

Sep 27, 2018 ICLR 2019 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: Adversarial training has been successfully applied to build robust models at a certain cost. While the robustness of a model increases, the standard classification accuracy declines. This phenomenon is suggested to be an inherent trade-off. We propose a model that employs feature prioritization by a nonlinear attention module and $L_2$ feature regularization to improve the adversarial robustness and the standard accuracy relative to adversarial training. The attention module encourages the model to rely heavily on robust features by assigning larger weights to them while suppressing non-robust features. The regularizer encourages the model to extracts similar features for the natural and adversarial images, effectively ignoring the added perturbation. In addition to evaluating the robustness of our model, we provide justification for the attention module and propose a novel experimental strategy that quantitatively demonstrates that our model is almost ideally aligned with salient data characteristics. Additional experimental results illustrate the power of our model relative to the state of the art methods.
  • Keywords: adversarial robustness, feature prioritization, regularization
  • TL;DR: We propose a model that employs feature prioritization and regularization to improve the adversarial robustness and the standard accuracy.
0 Replies

Loading