Distributionally Robust Neural NetworksDownload PDF

Published: 20 Dec 2019, Last Modified: 05 May 2023ICLR 2020 Conference Blind SubmissionReaders: Everyone
TL;DR: Overparameterized neural networks can be distributionally robust, but only when you account for generalization.
Abstract: Overparameterized neural networks can be highly accurate on average on an i.i.d. test set, yet consistently fail on atypical groups of the data (e.g., by learning spurious correlations that hold on average but not in such groups). Distributionally robust optimization (DRO) allows us to learn models that instead minimize the worst-case training loss over a set of pre-defined groups. However, we find that naively applying group DRO to overparameterized neural networks fails: these models can perfectly fit the training data, and any model with vanishing average training loss also already has vanishing worst-case training loss. Instead, the poor worst-case performance arises from poor generalization on some groups. By coupling group DRO models with increased regularization---stronger-than-typical L2 regularization or early stopping---we achieve substantially higher worst-group accuracies, with 10-40 percentage point improvements on a natural language inference task and two image tasks, while maintaining high average accuracies. Our results suggest that regularization is important for worst-group generalization in the overparameterized regime, even if it is not needed for average generalization. Finally, we introduce a stochastic optimization algorithm for the group DRO setting and provide convergence guarantees for the new algorithm.
Keywords: distributionally robust optimization, deep learning, robustness, generalization, regularization
Code: https://github.com/kohpangwei/group_DRO
Original Pdf: pdf
8 Replies