Keywords: Multi-View Learning, Representation Learning, Multimodal VAEs, Generative Models
Abstract: Multi-View Representation Learning (MVRL) aims to derive a unified representation from multi-view data by leveraging shared and complementary information across views. However, when views are irregularly missing, the incomplete data can lead to representations that lack sufficiency and consistency. To address this, we propose Multi-View Permutation of Variational Auto-Encoders (MVP), which excavates invariant relationships between views in incomplete data. MVP establishes inter-view correspondences in the latent space of Variational Auto-Encoders, enabling the inference of missing views and the aggregation of more sufficient information. To derive a valid Evidence Lower Bound (ELBO) for learning, we apply permutations to randomly reorder variables for cross-view generation and then partition them by views to maintain invariant meanings under permutations. Additionally, we enhance consistency by introducing an informational prior with cyclic permutations of posteriors, which turns the regularization term into a similarity measure across distributions. We demonstrate the effectiveness of our approach on seven diverse datasets with varying missing ratios, achieving superior performance in multi-view clustering and generation tasks.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1466
Loading