Conditional Diffusion on Web-Scale Image Pairs leads to Diverse Image Variations

ICLR 2025 Conference Submission1077 Authors

16 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: diffusion, image variations, generative models
Abstract: Generating image variations, where a model produces variations of an input image while preserving the semantic context has gained increasing attention. Current image variation techniques involve adapting a text-to-image model to reconstruct an input image conditioned on the same image. We first demonstrate that a diffusion model trained to reconstruct an input image from frozen embeddings can reconstruct the image with minor variations. Second, inspired by how text-to-image models learn from web-scale text-image pairs, we explore a new pretraining strategy to generate image variations using a large collection of image pairs. Our diffusion model \textit{Semantica} receives a random (encoded) image from a webpage as conditional input and denoises another noisy random image from the same webpage. We carefully examine various design choices for the image encoder, given its crucial role in extracting relevant context from the input image. Once trained, \textit{Semantica} can adaptively generate new images from a dataset by simply using images from that dataset as input. Finally, we identify limitations in standard image consistency metrics for evaluating image variations and propose alternative metrics based on few-shot generation.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1077
Loading