Keywords: Large Language Models (LLMs), In-Context Decision-Making, Dueling Bandits
Abstract: In-context reinforcement learning (ICRL) is a frontier paradigm for solving reinforcement learning problems in the foundation model era. While ICRL capabilities have been demonstrated in transformers through task-specific training, the potential of Large Language Models (LLMs) out-of-the-box remains largely unexplored. Recent findings highlight that LLMs often face challenges when dealing with numerical contexts, and limited attention has been paid to evaluating their performance through preference feedback generated by the environment. This paper is the first to investigate the performance of LLMs as in-context decision-makers in the problem of Dueling Bandits (DB), a stateless preference-based reinforcement learning setting that extends the classic Multi-Armed Bandit (MAB) model by querying for preference feedback. We compare GPT-3.5 Turbo, GPT-4, GPT-4 Turbo, Llama 3.1, and o1-preview against nine well-established DB algorithms. Our results reveal that our top-performing LLM, GPT-4 Turbo, possesses an understanding of relative decision-making sufficient to achieve low weak regret in DB by quickly selecting the best arm in duels. However, we observed that an optimality gap exists between LLMs and classic DB algorithms in terms of strong regret. LLMs struggle to converge and consistently exploit even when explicitly prompted to do so, and are sensitive to prompt variations. To overcome these issues, we introduce an agentic flow framework: LLM with Enhanced Algorithmic Dueling (LEAD), which integrates off-the-shelf DB algorithms with LLM agents through fine-grained adaptive interplay. We show that LEAD has theoretical guarantees inherited from classic DB algorithms on both weak and strong regret. We validate its efficacy and robustness even with noisy and adversarial prompts. The design of such an agentic framework sheds light on how to enhance the trustworthiness of general-purpose LLMs used for in-context decision-making tasks.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8491
Loading