Robust Discriminative Feature Subspace Learning Based on Low Rank RepresentationDownload PDF

10 May 2023OpenReview Archive Direct UploadReaders: Everyone
Abstract: Feature subspace learning is a critical technique in image recognition and classification tasks. Conventional feature subspace learning methods include two main problems. One is how to preserve the local structures and discrimination when the samples are projected into the learned subspace. The other hand when the data are corrupted with noise, the conventional learning models usually do not work well. To solve the two problems, a discriminative feature learning method is proposed based on Low Rank Representation (LRR). The novel method includes three main contributions. It explores the local structures among samples via low rank representation, and the representation coefficients are used as the similarity measurement to preserve the local neighborhood existed in the samples; To improve the anti-noise performance, a discriminative learning item is constructed from the recovered samples via low rank representation, which can enhance the discrimination and robustness simultaneously; An iterative numerical scheme is developed with alternating optimization, and the convergence can be guaranteed effectively. Extensive experimental results on several visual datasets demonstrate that the proposed method outperforms conventional feature learning methods on both of accuracy and robustness.
0 Replies

Loading