Flow: Modularized Agentic Workflow Automation

Published: 22 Jan 2025, Last Modified: 30 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLMs based Multi-Agent System
Abstract: Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution. However, the effective adjustment of agentic workflows during execution has not been well studied. An effective workflow adjustment is crucial in real-world scenarios, as the initial plan must adjust to unforeseen challenges and changing conditions in real time to ensure the efficient execution of complex tasks. In this paper, we define workflows as an activity-on-vertex (AOV) graph, which allows continuous workflow refinement by LLM agents through dynamic subtask allocation adjustment based on historical performance and previous AOVs. To further enhance framework performance, we emphasize modularity in workflow design based on evaluating parallelism and dependency complexity. With this design, our proposed multi-agent framework achieves efficient concurrent execution of subtasks, effective goal achievement, and enhanced error tolerance. Empirical results across various practical tasks demonstrate significant improvements in the efficiency of multi-agent frameworks through dynamic workflow refinement and modularization.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10666
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview