Keywords: federated learning, client selection, multi-armed bandit, uncertainty estimation
Abstract: Federated Learning faces significant challenges arising from two critical uncertainties: the validity of a client’s participation, which can be compromised by network and system heterogeneity, and the utility of the data contributed by each client, which varies due to heterogeneous statistical data. Traditional client selection methods often treat these uncertainties as a whole, leading to suboptimal performance. To address this issue, we propose FedSUV, an innovative client selection framework that decouples validity and utility uncertainties. FedSUV approaches client selection from a multi-objective optimization perspective, employing advanced bandit algorithms: a confidence bound-based linear contextual bandit for assessing validity and a Gaussian Process bandit for evaluating utility. We validate the effectiveness of FedSUV through both theoretical analysis and large-scale experiments conducted within our physical cluster.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Submission Number: 2861
Loading