Fair and Efficient Contribution Valuation for Vertical Federated Learning

Published: 16 Jan 2024, Last Modified: 05 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Vertical federated learning, Contribution valuation, Fairness
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Federated learning is an emerging technology for training machine learning models across decentralized data sources without sharing data. Vertical federated learning, also known as feature-based federated learning, applies to scenarios where data sources have the same sample IDs but different feature sets. To ensure fairness among data owners, it is critical to objectively assess the contributions from different data sources and compensate the corresponding data owners accordingly. The Shapley value is a provably fair contribution valuation metric originating from cooperative game theory. However, its straight-forward computation requires extensively retraining a model on each potential combination of data sources, leading to prohibitively high communication and computation overheads due to multiple rounds of federated learning. To tackle this challenge, we propose a contribution valuation metric called vertical federated Shapley value (VerFedSV) based on the classic Shapley value. We show that VerFedSV not only satisfies many desirable properties of fairness but is also efficient to compute. Moreover, VerFedSV can be adapted to both synchronous and asynchronous vertical federated learning algorithms. Both theoretical analysis and extensive experimental results demonstrate the fairness, efficiency, adaptability, and effectiveness of VerFedSV.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: societal considerations including fairness, safety, privacy
Submission Number: 8996
Loading