Subject Information Extraction for Novelty Detection with Domain Shifts

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: novelty detection
Abstract: Unsupervised novelty detection (UND), aimed at identifying novel samples, is essential in fields like medical diagnosis, cybersecurity, and industrial quality control. Most existing UND methods assume that the training data and testing normal data originate from the same domain and only consider the distribution variation between training data and testing data. However, in real scenarios, it is common for normal testing and training data to originate from different domains, a challenge known as domain shift. The discrepancies between training and testing data often lead to incorrect classification of normal data as novel by existing methods. A typical situation is that testing normal data and training data describe the same subject, yet they differ in the background conditions. To address this problem, we introduce a novel method that separates subject information from background variation encapsulating the domain information to enhance detection performance under domain shifts. The proposed method minimizes the mutual information between the representations of the subject and background while modelling the background variation using a deep Gaussian mixture model, where the novelty detection is conducted on the subject representations solely and hence is not affected by the variation of domains. Extensive experiments demonstrate that our model generalizes effectively to unseen domains and significantly outperforms baseline methods, especially under substantial domain shifts between training and testing data.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6940
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview