Provably Faster Algorithms for Bilevel Optimization and Applications to Meta-LearningDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: Bilevel Optimization, Computational Complexity, Meta-Learning, Hyper-Parameter Optimization
Abstract: Bilevel optimization has arisen as a powerful tool for many machine learning problems such as meta-learning, hyperparameter optimization, and reinforcement learning. In this paper, we investigate the nonconvex-strongly-convex bilevel optimization problem. For deterministic bilevel optimization, we provide a comprehensive finite-time convergence analysis for two popular algorithms respectively based on approximate implicit differentiation (AID) and iterative differentiation (ITD). For the AID-based method, we orderwisely improve the previous finite-time convergence analysis due to a more practical parameter selection as well as a warm start strategy, and for the ITD-based method we establish the first theoretical convergence rate. Our analysis also provides a quantitative comparison between ITD and AID based approaches. For stochastic bilevel optimization, we propose a novel algorithm named stocBiO, which features a sample-efficient hypergradient estimator using efficient Jacobian- and Hessian-vector product computations. We provide the finite-time convergence guarantee for stocBiO, and show that stocBiO outperforms the best known computational complexities orderwisely with respect to the condition number $\kappa$ and the target accuracy $\epsilon$. We further validate our theoretical results and demonstrate the efficiency of bilevel optimization algorithms by the experiments on meta-learning and hyperparameter optimization.
One-sentence Summary: This paper develops a general and enhanced theory and proposes provably faster algorithms for bilevel optimization.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Supplementary Material: zip
Reviewed Version (pdf): https://openreview.net/references/pdf?id=q2DqiIL3wK
11 Replies

Loading