Temporal Disentanglement of Representations for Improved Generalisation in Reinforcement LearningDownload PDF


22 Sept 2022, 12:38 (modified: 17 Nov 2022, 06:21)ICLR 2023 Conference Blind SubmissionReaders: Everyone
Keywords: Reinforcement Learning, Representation Learning, Disentanglement
TL;DR: We introduce Temporal Disentanglement (TED) to learn disentangled representations for Reinforcement Learning, improving generalisation to unseen environment variables.
Abstract: Reinforcement Learning (RL) agents are often unable to generalise well to environment variations in the state space that were not observed during training. This issue is especially problematic for image-based RL, where a change in just one variable, such as the background colour, can change many pixels in the image, which can lead to drastic changes in the agent's latent representation of the image, causing the learned policy to fail. To learn more robust representations, we introduce TEmporal Disentanglement (TED), a self-supervised auxiliary task that leads to disentangled image representations exploiting the sequential nature of RL observations. We find empirically that RL algorithms utilising TED as an auxiliary task adapt more quickly to changes in environment variables with continued training compared to state-of-the-art representation learning methods. Since TED enforces a disentangled structure of the representation, we also find that policies trained with TED generalise better to unseen values of variables irrelevant to the task (e.g.\ background colour) as well as unseen values of variables that affect the optimal policy (e.g.\ goal positions).
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
9 Replies