RILe: Reinforced Imitation Learning

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Imitation Learning, Inverse Reinforcement Learning, Reinforcement Learning
TL;DR: We introduce RILe, a scalable inverse reinforcement learning framework that decouples reward learning from policy learning via a trainer-student dynamic, enabling adaptive rewards and efficient imitation in complex tasks.
Abstract: Reinforcement Learning has achieved significant success in generating complex behavior but often requires extensive reward function engineering. Adversarial variants of Imitation Learning and Inverse Reinforcement Learning offer an alternative by learning policies from expert demonstrations via a discriminator. However, these methods struggle in complex tasks where randomly sampling expert-like behaviors is challenging. This limitation stems from their reliance on policy-agnostic discriminators, which provide insufficient guidance for agent improvement, especially as task complexity increases and expert behavior becomes more distinct. We introduce RILe (Reinforced Imitation Learning environment), a novel trainer-student system that learns a dynamic reward function based on the student's performance and alignment with expert demonstrations. In RILe, the student learns an action policy while the trainer, using reinforcement learning, continuously updates itself via the discriminator's feedback to optimize the alignment between the student and the expert. The trainer optimizes for long-term cumulative rewards from the discriminator, enabling it to provide nuanced feedback that accounts for the complexity of the task and the student's current capabilities. This approach allows for greater exploration of agent actions by providing graduated feedback rather than binary expert/non-expert classifications. By reducing dependence on policy-agnostic discriminators, RILe enables better performance in complex settings where traditional methods falter, outperforming existing methods by 2x in complex simulated robot-locomotion tasks.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10930
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview