ERA-Solver: Error-Robust Adams Solver for Fast Sampling of Diffusion Probabilistic Models

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: diffusion models
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Though denoising diffusion probabilistic models (DDPMs) have achieved remarkable generation results, the low sampling efficiency of DDPMs still limits further applications. Since DDPMs can be formulated as diffusion ordinary differential equations (ODEs), various fast sampling methods can be derived from solving diffusion ODEs. However, we notice that previous fast sampling methods with fixed analytical form are not able to robust with the various error patterns in the noise estimated from pretrained diffusion models. In this work, we construct an error-robust Adams solver (ERA-Solver), which utilizes the implicit Adams numerical method that consists of a predictor and a corrector. Different from the traditional predictor based on explicit Adams methods, we leverage a Lagrange interpolation function as the predictor, which is further enhanced with an error-robust strategy to adaptively select the Lagrange bases with lower errors in the estimated noise. The proposed solver can be directly applied to any pretrained diffusion models, without extra training. Experiments on Cifar10, CelebA, LSUN-Church, and ImageNet 64 $\times$ 64 (conditional) datasets demonstrate that our proposed ERA-Solver achieves 3.54, 5.06, 5.02, and 5.11 Frechet Inception Distance (FID) for image generation, with only 10 network evaluations.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4853
Loading