Pareto-Optimal Learning from Preferences with Hidden Context

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Preference Learning, Lexicase Selection, Pareto-optimality, Hidden Context, Pluralistic Alignment
TL;DR: Creating a set of reward models or policies that are Pareto-optimal with respect to preferences aids in aligning to multiple diverse groups of people.
Abstract: Ensuring AI models align with human values is essential for their safety and functionality. Reinforcement learning from human feedback (RLHF) leverages human preferences to achieve this alignment. However, when preferences are sourced from diverse populations, point estimates of reward can result in suboptimal performance or be unfair to specific groups. We propose Pareto Optimal Preference Learning (POPL), which enables pluralistic alignment by framing discrepant group preferences as objectives with potential trade-offs, aiming for policies that are Pareto-optimal on the preference dataset. POPL utilizes lexicase selection, an iterative process that selects diverse and Pareto-optimal solutions. Our theoretical and empirical evaluations demonstrate that POPL surpasses baseline methods in learning sets of reward functions and policies, effectively catering to distinct groups without access to group numbers or membership labels. We verify the performance of POPL on a stateless preference learning setting, a Minigrid RL domain, Metaworld robotics benchmarks, as well as large language model (LLM) fine-tuning. We illustrate that POPL can also serve as a foundation for techniques optimizing specific notions of group fairness, ensuring safe and equitable AI model alignment.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7524
Loading