Benchmarking Predictive Coding Networks -- Made Simple

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 SpotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: cognitive science, predictive coding, computational neuroscience
Abstract: In this work, we tackle the problems of efficiency and scalability for predictive coding networks (PCNs) in machine learning. To do so, we propose a library that focuses on performance and simplicity, and use it to implement a large set of standard benchmarks for the community to use for their experiments. As most works in the field propose their own tasks and architectures, do not compare one against each other, and focus on small-scale tasks, a simple and fast open-source library, and a comprehensive set of benchmarks, would address all of these concerns. Then, we perform extensive tests on such benchmarks using both existing algorithms for PCNs, as well as adaptations of other methods popular in the bio-plausible deep learning community. All of this has allowed us to (i) test architectures much larger than commonly used in the literature, on more complex datasets; (ii) reach new state-of-the-art results in all of the tasks and dataset provided; (iii) clearly highlight what the current limitations of PCNs are, allowing us to state important future research directions. With the hope of galvanizing community efforts towards one of the main open problems in the field, scalability, we will release the code, tests, and benchmarks.
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9795
Loading