Keywords: depthwise-separable convolution, lightweight models, nmODE
TL;DR: We optimize depthwise-separable convolution through a discrete ODE module for building lightweight models, achieving remarkable performances with less parameters.
Abstract: Depthwise-separable convolution has emerged as a significant milestone in the lightweight development of Convolutional Neural Networks (CNNs) over the past decade. This technique consists of two key components: depthwise convolution, which captures spatial information, and pointwise convolution, which enhances channel interactions. In this paper, we propose a novel method to lightweight CNNs through the discretization of Ordinary Differential Equations (ODEs). Specifically, we optimize depthwise-separable convolution by replacing the pointwise convolution with a discrete ODE module, termed the \emph{\textbf{C}hannelwise \textbf{O}DE \textbf{S}olver (COS)}. The COS module is constructed by a simple yet efficient direct differentiation Euler algorithm, using learnable increment parameters. This replacement reduces parameters by over $98.36$\% compared to conventional pointwise convolution. By integrating COS into MobileNet, we develop a new extra lightweight network called MobileODE. With carefully designed basic and inverse residual blocks, the resulting MobileODEV1 and MobileODEV2 reduce channel interaction parameters by $71.0$\% and $69.2$\%, respectively, compared to MobileNetV1, while achieving higher accuracy across various tasks, including image classification, object detection, and semantic segmentation. The code is available at {\url{https://github.com/cashily/MobileODE}}.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 15104
Loading