Transformers are Efficient Compilers, Provably

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Transformers, Expressive Power, Programming Language, Attention Mechanism, Compiler
TL;DR: We prove transformers can efficiently act as compilers.
Abstract: Transformer-based large language models (LLMs) have demonstrated surprisingly robust performance across a wide range of language-related tasks, including programming language understanding and generation. In this paper, we take the first steps towards a formal investigation of using transformers as compilers from an expressive power perspective. To this end, we introduce a representative programming language, **mini-husky**, which encapsulates key features of modern C-like languages. We show that if the input code sequence has a bounded depth in both the Abstract Syntax Tree (AST) and type inference (reasonable assumptions based on the clean code principle), then the number of parameters required by transformers depends only on the logarithm of the input sequence length to handle compilation tasks, such as AST construction, symbol resolution, and type analysis. A significant technical challenge stems from the fact that transformers operate at a low level, where each layer processes the input sequence as raw vectors without explicitly associating them with predefined structure or meaning. In contrast, high-level compiler tasks necessitate managing intricate relationships and structured program information. Our primary technical contribution is the development of a domain-specific language, **Cybertron**, which generates formal proofs of the transformer’s expressive power, scaling to address compiler tasks. We further establish that recurrent neural networks (RNNs) require at least a linear number of parameters relative to the input sequence, leading to an exponential separation between transformers and RNNs. Finally, we empirically validate our theoretical results by comparing transformers and RNNs on compiler tasks within **mini-husky**.
Supplementary Material: zip
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8587
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview