Keywords: LLMs, Inference, Optimal Transport, Speculative Decoding
TL;DR: We extend block verification to the multi-path setting to improve block efficiency
Abstract: The goal of L-step speculative decoding is to accelerate autoregressive decoding of a target model by using a cheaper draft model to generate a candidate path of L tokens. Based on a verification algorithm involving target and draft model probabilities, a prefix of the candidate sequence is accepted, and an additional correction token is sampled from a residual distribution to ensure that the final output adheres to the target distribution. While standard speculative decoding uses a verification algorithm which is independent at each token on the path, a recent extension called block verification uses a joint condition involving all sampled on-path probabilities. Block verification (BV) was shown to be optimal over all verification algorithms which use only on-path probabilities, improving on standard speculative decoding. In this work, we first show that block verification is optimal even over verification algorithms that use off-path probabilities, by constructing an information-agnostic linear program (LP). Further, we can extend our LP to the setting where the draft model samples multiple candidate paths, and use it to construct a natural class of multi-path block verification generalizations. While computing the optimal algorithm in this class is not tractable, by considering a stricter class of greedy algorithms, we can formulate an efficient method called greedy multi-path block verification (GBV). Empirically, GBV can improve block efficiency by over 30% and reduce decoding walltimes by over 15% relative to BV.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Submission Number: 14412
Loading