Keywords: Multi-Objective Reinforcement Learning, Reinforcement Learning
TL;DR: We propose an online reward dimension reduction method that enables MORL algorithms to scale to environments with many objectives.
Abstract: In this paper, we introduce a simple yet effective reward dimension reduction method to tackle the scalability challenges of multi-objective reinforcement learning algorithms. While most existing approaches focus on optimizing two to four objectives, their abilities to scale to environments with more objectives remain uncertain. Our method uses a dimension reduction approach to enhance learning efficiency and policy performance in multi-objective settings. While most traditional dimension reduction methods are designed for static datasets, our approach is tailored for online learning and preserves Pareto-optimality after transformation. We propose a new training and evaluation framework for reward dimension reduction in multi-objective reinforcement learning and demonstrate the superiority of our method in environments including one with sixteen objectives, significantly outperforming existing online dimension reduction methods.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8759
Loading