CEIL: Generalized Contextual Imitation Learning

Published: 21 Sept 2023, Last Modified: 02 Nov 2023NeurIPS 2023 posterEveryoneRevisionsBibTeX
Keywords: imitation learning, reinforcement learning, offline imitation learning
Abstract: In this paper, we present ContExtual Imitation Learning (CEIL), a general and broadly applicable algorithm for imitation learning (IL). Inspired by the formulation of hindsight information matching, we derive CEIL by explicitly learning a hindsight embedding function together with a contextual policy using the hindsight embeddings. To achieve the expert matching objective for IL, we advocate for optimizing a contextual variable such that it biases the contextual policy towards mimicking expert behaviors. Beyond the typical learning from demonstrations (LfD) setting, CEIL is a generalist that can be effectively applied to multiple settings including: 1) learning from observations (LfO), 2) offline IL, 3) cross-domain IL (mismatched experts), and 4) one-shot IL settings. Empirically, we evaluate CEIL on the popular MuJoCo tasks (online) and the D4RL dataset (offline). Compared to prior state-of-the-art baselines, we show that CEIL is more sample-efficient in most online IL tasks and achieves better or competitive performances in offline tasks.
Supplementary Material: zip
Submission Number: 10782
Loading