Keywords: Automated interpretability, Benchmarking interpretability, Understanding high-level properties of models
Other Keywords: Feature Description, Concept-based explanations
TL;DR: We introduce a multi-concept feature description framework which can identify and score polysemantic features.
Abstract: Automated interpretability research aims to identify concepts encoded in neural network features to enhance human understanding of model behavior. Within the context of large language models (LLMs) for natural language processing (NLP), current automated neuron-level feature description methods face two key challenges: limited robustness and the assumption that each neuron encodes a single concept (monosemanticity), despite increasing evidence of polysemanticity. This assumption restricts the expressiveness of feature descriptions and limits their ability to capture the full range of behaviors encoded in model internals. To address this, we introduce Polysemantic FeatuRe Identification and Scoring Method (PRISM), a novel framework specifically designed to capture the complexity of features in LLMs. Unlike approaches that assign a single description per neuron, common in many automated interpretability methods in NLP, PRISM produces more nuanced descriptions that account for both monosemantic and polysemantic behavior. We apply PRISM to LLMs and, through extensive benchmarking against existing methods, demonstrate that our approach produces more accurate and faithful feature descriptions, improving both overall description quality (via a description score) and the ability to capture distinct concepts when polysemanticity is present (via a polysemanticity score).
Submission Number: 105
Loading