LAION-C: An Out-of-Distribution Benchmark for Web-Scale Vision Models

Published: 06 Mar 2025, Last Modified: 06 Mar 2025SCSL @ ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Track: regular paper (up to 6 pages)
Keywords: OOD, representation learning, benchmark, model evaluation, vision, classification, psychophysics
TL;DR: We introduce a new OOD robustness benchmark for web-scale models along with human performance results.
Abstract: Out-of-distribution (OOD) robustness is a desired property of computer vision models. Improving model robustness requires high-quality signals from robustness benchmarks to quantify progress. While various benchmark datasets such as ImageNet-C were proposed in the ImageNet era, most ImageNet-C corruption types are no longer OOD relative to today's large datasets scraped from the web, which already contain common corruptions such as blur or JPEG compression artifacts. Consequently, these standard benchmarks are no longer well-suited for evaluating OOD robustness in the era of web-scale datasets. Indeed, recent models show saturating scores on ImageNet-era OOD benchmarks, indicating that it is unclear whether models trained on web-scale datasets truly become better at OOD generalization or whether they have simply been exposed to the test distortions during training. To address this, we here introduce LAION-C as a benchmark alternative for ImageNet-C. LAION-C consists of six novel distortion types specifically designed to be OOD, even for web-scale datasets such as LAION. In a comprehensive evaluation of state-of-the-art models, we find that the LAION-C dataset poses significant challenges to contemporary models, including MLLMs such as Gemini and GPT-4o. We additionally conducted a psychophysical experiment to evaluate the difficulty of our proposed corruptions for human observers, enabling a comparison of models to lab-quality human robustness data. We observe a paradigm shift in OOD generalization: from humans outperforming models, to the best models now matching or outperforming the best human observers.
Anonymization: This submission has been anonymized for double-blind review via the removal of identifying information such as names, affiliations, and identifying URLs.
Format: Maybe: the presenting author will attend in person, contingent on other factors that still need to be determined (e.g., visa, funding).
Funding: No, the presenting author of this submission does *not* fall under ICLR’s funding aims, or has sufficient alternate funding.
Presenter: ~Fanfei_Li1
Submission Number: 3
Loading