Keywords: Multi-View Classification, Multi-Scale Alignment, Fuzzy Logic, Decision Boundary
Abstract: Multi-view classification aims at unifying the data from multiple views to complementarily enhance the classification performance. Unfortunately, two major problems in multi-view data are damaging model performance. The first is feature heterogeneity, which makes it hard to fuse features from different views. Considering this, we introduce a multi-scale alignment module, including an instance-scale alignment module and a prototype-scale alignment module to mine the commonality from an inter-view perspective and an inter-class perspective respectively, jointly alleviating feature heterogeneity. The second is information redundancy which easily incurs ambiguous data to blur class boundaries and impair model generalization. Therefore, we propose a novel expanded boundary by extending the original class boundary with fuzzy set theory, which adaptively adjusts the boundary to fit ambiguous data. By integrating the expanded boundary into the prototype-scale alignment module, our model further tightens the produced representations and reduces boundary ambiguity. Additionally, compared with the original class boundary, the expanded boundary preserves more margins for classifying unseen data, which guarantees the model generalization. Extensive experiment results across various real-world datasets demonstrate the superiority of the proposed model against existing state-of-the-art methods.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3591
Loading