On the Benefits of Attribute-Driven Graph Domain Adaptation

ICLR 2025 Conference Submission6987 Authors

26 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Deep Learning and representational learning
Abstract: Graph Domain Adaptation (GDA) addresses a pressing challenge in cross-network learning, particularly pertinent due to the absence of labeled data in real-world graph datasets. Recent studies attempted to learn domain invariant representations by eliminating structural shifts between graphs. In this work, we show that existing methodologies have overlooked the significance of the graph node attribute, a pivotal factor for graph domain alignment. Specifically, we first reveal the impact of node attributes for GDA by theoretically proving that in addition to the graph structural divergence between the domains, the node attribute discrepancy also plays a critical role in GDA. Moreover, we also empirically show that the attribute shift is more substantial than the topology shift, which further underscore the importance of node attribute alignment in GDA. Inspired by this finding, a novel cross-channel module is developed to fuse and align both views between the source and target graphs for GDA. Experimental results on a variety of benchmark verify the effectiveness of our method.
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6987
Loading