Graph Learning via Spectral DensificationDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: Spectral Graph Theory, Undirected Graphical models, Gaussian Markov Random Fields
Abstract: Graph learning plays important role in many data mining and machine learning tasks, such as manifold learning, data representation and analysis, dimensionality reduction, data clustering, and visualization, etc. For the first time, we present a highly-scalable spectral graph densification approach (GRASPEL) for graph learning from data. By limiting the precision matrix to be a graph-Laplacian-like matrix in graphical Lasso, our approach aims to learn ultra-sparse undirected graphs from potentially high-dimensional input data. A very unique property of the graphs learned by GRASPEL is that the spectral embedding (or approximate effective-resistance) distances on the graph will encode the similarities between the original input data points. By interleaving the latest high-performance nearly-linear time spectral methods, ultrasparse yet spectrally-robust graphs can be learned by identifying and including the most spectrally-critical edges into the graph. Compared with prior state-of-the-art graph learning approaches, GRASPEL is more scalable and allows substantially improving computing efficiency and solution quality of a variety of data mining and machine learning applications, such as manifold learning, spectral clustering (SC), and dimensionality reduction.
One-sentence Summary: A highly-efficient graph learning approach exploiting high-performance spectral graph algorithms
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Supplementary Material: zip
Reviewed Version (pdf): https://openreview.net/references/pdf?id=zu3mEFgKh0
12 Replies

Loading