A Mathematical Framework for Characterizing Dependency Structures of Multimodal LearningDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Multimodal learning, dependency structures, correlation anaylses, emotion recognition, classification
Abstract: Dependency structures between modalities have been utilized explicitly and implicitly in multimodal learning to enhance classification performance, particularly when the training samples are insufficient. Recent efforts have concentrated on developing suitable dependence structures and applying them in deep neural networks, but the interplay between the training sample size and various structures has not received enough attention. To address this issue, we propose a mathematical framework that can be utilized to characterize conditional dependency structures in analytic ways. It provides an explicit description of the sample size in learning various structures in a non-asymptotic regime. Additionally, it demonstrates how task complexity and a fitness evaluation of conditional dependence structures affect the results. Furthermore, we develop an autonomous updated coefficient algorithm auto-CODES based on the theoretical framework and conduct experiments on multimodal emotion recognition tasks using the MELD and IEMOCAP datasets. The experimental results validate our theory and show the effectiveness of the proposed algorithm.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
Supplementary Material: zip
5 Replies

Loading