Keywords: Extreme-token Phenomena, Transformers
Abstract: Large models based on the Transformer architecture are susceptible to extreme-token phenomena, such as attention sinks and value-state drains. These issues, which degrade model performance, quantization fidelity, and interpretability, arise from a problematic mutual reinforcement mechanism where the model learns an inefficient 'no-op' behavior by focusing attention on tokens with near-zero value states. In this paper, we propose Value-State Gated Attention (VGA), a simple dedicated and stable architectural mechanism for efficient performing of 'no-op' attention by directly breaking this cycle. VGA introduces a learnable, data-dependent gate, computed directly from the value vectors (V), to modulate the output. Through a theoretical analysis of the underlying gradients, we show that gating the value-state with a function of itself is more effective at decoupling value and attention score updates than prior methods that gate on input embeddings. This creates a direct regulatory pathway that allows the model to suppress a token's contribution based on its emergent value representation. Our experiments demonstrate that VGA significantly mitigates the formation of attention sinks and stabilizes value-state norms, leading to improved performance, robust quantization fidelity, and enhanced model interpretability.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 15718
Loading