Large Language Models can Learn Rules

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: large language models, natural language processing, reasoning, compositional generalization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: A prompting method that induces explicit rules from training data and applies them in deductive reasoning.
Abstract: When prompted with a few examples and intermediate steps, large language models (LLMs) have demonstrated impressive performance in various reasoning tasks. However, prompting methods that rely on implicit knowledge in an LLM often hallucinate incorrect answers when the implicit knowledge is wrong or inconsistent with the task. To tackle this problem, we present Hypotheses-to-Theories (HtT), a framework that learns a rule library for reasoning with LLMs. HtT contains two stages, an induction stage and a deduction stage. In the induction stage, an LLM is first asked to generate and verify rules over a set of training examples. Rules that appear and lead to correct answers sufficiently often are collected to form a rule library. In the deduction stage, the LLM is then prompted to employ the learned rule library to perform reasoning to answer test questions. Experiments on both numerical reasoning and relational reasoning problems show that HtT improves existing prompting methods, with an absolute gain of 11-27% in accuracy. The learned rules are also transferable to different models and to different forms of the same problem.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4966
Loading