Graph Deformer NetworkDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: Graph Convolution, Anchor Space, Anisotropic Convolution, Graph Classification, Node Classification
Abstract: Convolution learning on graphs draws increasing attention recently due to its potential applications to a large amount of irregular data. Most graph convolution methods leverage the plain summation/average aggregation to avoid the discrepancy of responses from isomorphic graphs. However, such an extreme collapsing way would result in a structural loss and signal entanglement of nodes, which further cause the degradation of the learning ability. In this paper, we propose a simple yet effective graph deformer network (GDN) to fulfill anisotropic convolution filtering on graphs, analogous to the standard convolution operation on images. Local neighborhood subgraphs (acting like receptive fields) with different structures are deformed into a unified virtual space, coordinated by several anchor nodes. In space deformation, we transfer components of nodes therein into anchors by learning their correlation, and build a pseudo multi-granularity plane calibrated with anchors. Anisotropic convolutional kernels can be further performed over the anchor-coordinated space to well encode local variations of receptive fields. By parameterizing anchors and stacking coarsening layers, we build a graph deformer network in an end-to-end fashion. Theoretical analysis indicates its connection to previous work and shows the promising property of isomorphism testing. Extensive experiments on widely-used datasets validate the effectiveness of the proposed GDN in node and graph classifications.
One-sentence Summary: We propose an effective graph deformer network (GDN) to implement an anisotropic convolution filtering on graphs, and verify its superiority in theory and experiment.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Supplementary Material: zip
Reviewed Version (pdf): https://openreview.net/references/pdf?id=k9U291IHU4
5 Replies

Loading