Keywords: data Shapley, hardness characterization, synthetic data generation
Abstract: Synthetic data generation has been proven successful in improving model performance and robustness in the context of scarce or low-quality data. Using the data valuation framework to statistically identify beneficial and detrimental observations, we introduce a novel augmentation pipeline that generates only high-value training points based on hardness characterization. We first demonstrate via benchmarks on real data that Shapley-based data valuation methods perform comparably with learning-based methods in hardness characterisation tasks, while offering significant theoretical and computational advantages. Then, we show that synthetic data generators trained on the hardest points outperform non-targeted data augmentation on simulated data and on a large scale credit default prediction task. In particular, our approach improves the quality of out-of-sample predictions and it is computationally more efficient compared to non-targeted methods.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4423
Loading