Improving Fairness and Mitigating MADness in Generative Models

ICLR 2025 Conference Submission13037 Authors

28 Sept 2024 (modified: 23 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Hypernetworks, Generative Models, Fairness, MADness, Maximum Likelihood Estimation, Bias
TL;DR: We show how hypernetwork training leads to more fair, less biased, and less MAD generative models.
Abstract: Generative models unfairly penalize data belonging to minority classes, suffer from model autophagy disorder (MADness), and learn biased estimates of the underlying distribution parameters. Our theoretical and empirical results show that training generative models with intentionally designed hypernetworks leads to models that 1) are more fair when generating datapoints belonging to minority classes 2) are more stable in a self-consumed (i.e., MAD) setting, and 3) learn parameters that are less statistically biased. To further mitigate unfairness, MADness, and bias, we introduce a regularization term that penalizes discrepancies between a generative model’s estimated weights when trained on real data versus its own synthetic data. To facilitate training existing deep generative models within our framework, we offer a scalable implementation of hypernetworks that automatically generates a hypernetwork architecture for any given generative model.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13037
Loading