Abstract: Imagine placing an online order on your way to the grocery store, then being able to pick the collected basket upon arrival or shortly after. Likewise, imagine placing any online retail order, made ready for pickup in minutes instead of days. In order to realize such a low-latency automatic warehouse logistics system, solvers must be made to be basket-aware. That is, it is more important that the full order (the basket) is picked timely and fast, than that any single item in the order is picked quickly. Current state-of-the-art methods are not basket-aware. Nor are they optimized for a positive customer experience, that is; to prioritize customers based on queue place and the difficulty associated with picking their order. An example of the latter is that it is preferable to prioritize a customer ordering a pack of diapers over a customer shopping a larger order, but only as long as the second customer has not already been waiting for too long. In this work we formalize the problem outlined, propose a new method that significantly outperforms the state-of-the-art, and present a new realistic simulated benchmark. The proposed method is demonstrated to work in an on-line and real-time setting, and to solve the on-demand multi-agent basket picking problem for automated shopping stores under realistic conditions.
Loading