WiNeRT: Towards Neural Ray Tracing for Wireless Channel Modelling and Differentiable SimulationsDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: neural rendering, wireless, ray tracing, nerf
TL;DR: Neural wireless ray tracer
Abstract: In this paper, we work towards a neural surrogate to model wireless electro-magnetic propagation effects in indoor environments. Such neural surrogates provide a fast, differentiable, and continuous representation of the environment and enables end-to-end optimization for downstream tasks (e.g., network planning). Specifically, the goal of the paper is to render the wireless signal (e.g., time-of-flights, power of each path) in an environment as a function of the sensor's spatial configuration (e.g., placement of transmit and receive antennas). NeRF-based approaches have shown promising results in the visual setting (RGB image signal, with a camera sensor), where the key idea is to algorithmically evaluate the 'global' signal (e.g., using volumetric rendering) by breaking it down in a sequence of 'local' evaluations (e.g., using co-ordinate neural networks). In a similar spirit, we model the time-angle channel impulse response (the global wireless signal) as a superposition of multiple paths. The wireless characteristics (e.g., power) of each path is a result of multiple evaluations of a neural network that learns implicit ray-surface interaction properties. We evaluate our approach in multiple indoor scenarios and demonstrate that our model achieves strong performance (e.g., $<$0.33ns error in time-of-flight predictions). Furthermore, we demonstrate that our neural surrogate whitens the `black-box' wireless simulators, and thus enables inverse rendering applications (e.g., user localization).
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
Supplementary Material: zip
15 Replies

Loading