Keywords: Few-Shot Learning, Finetuning, Equivariance
TL;DR: We design a novel finetuning strategy to finetune the feature extractor with unbiased estimation in Few-Shot Learning.
Abstract: Few-Shot Learning (FSL) aims to learn a simple and effective bias on limited novel samples. Recently, many methods have been focused on re-training a randomly initialized linear classifier to adapt it to the novel features extracted by the pre-trained feature extractor (called Linear-Probing-based methods). These methods typically assumed the pre-trained feature extractor was robust enough, i.e., finetuning was not needed, and hence the pre-trained feature extractor does not change on the novel samples. However, the unchanged pre-trained feature extractor will distort the features of novel samples because the robustness assumption may not hold, especially on the out-of-distribution samples. To extract the undistorted features, we designed Linear-Probing-Finetuning with Firth-Bias (LP-FT-FB) to yield an accurate bias on the limited samples for better finetuning the pre-trained feature extractor, providing stronger transferring ability. In LP-FT-FB, we further proposed inverse Firth Bias Reduction (i-FBR) to regularize the over-parameterized feature extractor on which FBR does not work well. The proposed i-FBR effectively alleviates the over-fitting problem of the feature extractor in the process of finetuning and helps extract undistorted novel features. To show the effectiveness of the designed LP-FT-FB, we conducted a lot of experiments on the commonly used FSL datasets under different backbones, including in-domain and cross-domain FSL tasks. The experimental results show that the proposed FT-LP-FB outperforms the SOTA FSL methods. The code is available at https://github.com/whzyf951620/LinearProbingFinetuningFirthBias.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
6 Replies
Loading