Automated Search-Space Generation Neural Architecture Search

21 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: autoML, neural architecture search, hierarchical structured sparsity
Abstract: To search an optimal sub-network within a general deep neural network (DNN), existing neural architecture search (NAS) methods typically rely on handcrafting a search space beforehand. Such requirements make it challenging to extend them onto general scenarios without significant human expertise and manual intervention. To overcome the limitations, we propose Automated Search-Space Generation Neural Architecture Search (ASGNAS), perhaps the first automated system to train general DNNs that cover all candidate connections and operations and produce high-performing sub-networks in the one shot manner. Technologically, ASGNAS delivers three noticeable contributions to minimize human efforts: (i) automated search space generation for general DNNs; (ii) a Hierarchical Half-Space Projected Gradient (H2SPG ) that leverages the hierarchy and dependency within generated search space to ensure the network validity during optimization, and reliably produces a solution with both high performance and hierarchical group sparsity; and (iii) automated sub-network construction upon the H2SPG solution. Numerically, we demonstrate the effectiveness of ASGNAS on a variety of general DNNs, including RegNet, StackedUnets, SuperResNet, and DARTS, over benchmark datasets such as CIFAR10, Fashion-MNIST, ImageNet, STL-10 , and SVNH. The sub-networks computed by ASGNAS achieve competitive even superior performance compared to the starting full DNNs and other state-of-the-arts.
Primary Area: infrastructure, software libraries, hardware, etc.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3991
Loading