Keywords: reranking, retrieval, generation
Abstract: Accurate document retrieval is crucial for the success of retrieval-augmented generation (RAG) applications, including open-domain question answering and code completion. While large language models (LLMs) have been employed as dense encoders or listwise rerankers in RAG systems, they often struggle with reasoning-intensive tasks because they lack nuanced analysis when judging document relevance. To address this limitation, we introduce JudgeRank, a novel agentic reranker that emulates human cognitive processes when assessing document relevance. Our approach consists of three key steps: (1) query analysis to identify the core problem, (2) document analysis to extract a query-aware summary, and (3) relevance judgment to provide a concise assessment of document relevance. We evaluate JudgeRank on the reasoning-intensive BRIGHT benchmark, demonstrating substantial performance improvements over first-stage retrieval methods and outperforming other popular reranking approaches. In addition, JudgeRank performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR benchmark, validating its zero-shot generalization capability. Through comprehensive ablation studies, we demonstrate that JudgeRank's performance generalizes well across LLMs of various sizes while ensembling them yields even more accurate reranking than individual models.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12456
Loading