BAYESIAN COMPRESSED DEEP LEARNING FOR STATE ESTIMATION OF UNOBSERVABLE POWER SYSTEMSDownload PDF

Mar 04, 2021 (edited Apr 01, 2021)Neural Compression Workshop @ ICLR 2021Readers: Everyone
  • Keywords: bayesian compression, power systems, state estimation, deep learning
  • TL;DR: Compressing neural network-based models for state estimation in electrical networks.
  • Abstract: In recent years, state-of-the-art Deep Learning (DL)-based modeling has been applied to the problem of state estimation of unobservable electrical distribution systems, with promising results. Unfortunately, the definition and training of these flexible models have been largely heuristic, which may result in oversized neural networks, with computationally inefficient layers. In this work, we apply the method of Bayesian Compression for eliminating spurious redundancies of DL-based State Estimation models. Experimental results in four test networks, including two IEEE Test Case Power Networks, corroborate the benefits of the proposed compression approach for obtaining reduced versions of the models without compromising their performance.
1 Reply

Loading